## Practice Problems on Integrals <br> Solutions

1. Evaluate the following integrals:
(a) $\int_{0}^{1}\left(x^{3}+2 x^{5}+3 x^{10}\right) d x$

Solution: $(1 / 4)+2(1 / 6)+3(1 / 11)$
(b) $\int_{0}^{\infty}(1+x)^{-5} d x$

Solution: Change variables $y=1+x: \int_{1}^{\infty} y^{-5} d y=1 / 4$
(c) $\int_{0}^{\infty} x(1+x)^{-5} d x$

Solution: Change variables $y=1+x: \int_{1}^{\infty}(y-1) y^{-5} d y=\int_{1}^{\infty} y^{-4} d y-\int_{1}^{\infty} y^{-5} d y=$ $(1 / 3)-(1 / 4)=1 / 12$
(d) $\int_{1}^{\infty} e^{-3 x} d x$

Solution: $(1 / 3) e^{-3}$
(e) $\int_{1}^{\infty} x e^{-3 x} d x$

Solution: $(4 / 9) e^{-3}$ (use integration by parts)
(f) $\int_{-\infty}^{\infty}|x| e^{-x^{2} / 2} d x$

Solution: By symmetry, this is $2 \int_{0}^{\infty} x e^{-x^{2} / 2} d x$. Substituting $u=x^{2}, d u=2 x d x$, this becomes $\int_{0}^{\infty} e^{-u / 2} d u=2$
2. Given that $X$ has density (p.d.f.)

$$
f(x)= \begin{cases}1-|x| & \text { for }-1<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

evaluate:
(a) $P(X \geq 1 / 2)$

Solution: $\quad P(X \geq 1 / 2)=\int_{1 / 2}^{\infty} f(x) d x=\int_{1 / 2}^{1}(1-x) d x=1 / 8 . \quad$ (Alternatively, determine the answer geometrically, as the area under the graph of $f(x)$ from $1 / 2$ to 1)
(b) $P(X \geq-1 / 2)$

Solution: $\quad P(X \geq-1 / 2)=\int_{-1 / 2}^{\infty} f(x) d x=\int_{-1 / 2}^{0}(1+x) d x+\int_{0}^{1}(1-x) d x=7 / 8$. (Again, this can also be obtained geometrically, via area considerations.)
(c) $E(X)$

Solution: $E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{-1}^{0} x(1+x) d x+\int_{0}^{1} x(1-x) d x=0$.
(d) $E\left(X^{2}\right)$

Solution: $E\left(X^{2}\right)=\int_{-1}^{1} x^{2} f(x) d x=\int_{-1}^{0} x^{2}(1+x) d x+\int_{0}^{1} x^{2}(1-x) d x=1 / 6$.
(e) $F(x)$ (the c.d.f.)

Solution: First, note that for $x<-1, F(x)=0$, and for $x>1, F(x)=1$, so it remains to consider the range $-1 \leq x \leq 1$. In this range, $F(x)=\int_{-\infty}^{x} f(t) d t=$ $\int_{-1}^{x}(1-|t|) d t$. Because of the absolute value sign in $f(t)=1-|t|$, we need to consider separately the cases when $-1 \leq x<0$ and $0 \leq x \leq 1$, and split the integral at 0 in the latter case. For $-1 \leq x<0$,

$$
F(x)=\int_{-1}^{x}(1+t) d t=\left[t+\frac{t^{2}}{2}\right]_{t=-1}^{t=x}=\left(x+\frac{x^{2}}{2}\right)-\left((-1)+\frac{(-1)^{2}}{2}\right)=x+\frac{x^{2}}{2}+\frac{1}{2} .
$$

In particular, $F(-1)=0, F(0)=1 / 2$, as expected. For $0 \leq x \leq 1$,

$$
F(x)=\int_{-1}^{0}(1+t) d t+\int_{0}^{x}(1-t) d t=\frac{1}{2}+\left[t-\frac{t^{2}}{2}\right]_{t=0}^{t=x}=\frac{1}{2}+x-\frac{x^{2}}{2} .
$$

Altogether, $F(x)$ is given by

$$
F(x)= \begin{cases}0 & \text { for } x<-1 \\ x+\frac{x^{2}}{2}+\frac{1}{2} . & \text { for }-1 \leq x \leq 0 \\ x-\frac{x^{2}}{2}+\frac{1}{2} . & \text { for } 0 \leq x \leq 1 \\ & \text { for } x>1\end{cases}
$$

3. Let $X$ be exponentially distributed with mean 2 . Determine:
(a) $P(X \geq 5)$.

Solution: We have $P(X \geq 5)=e^{-5 / \theta}=e^{-5 / 2}$, by the tail formula for an exponential distribution.
(b) $P(2 \leq X \leq 5)$.

Solution: We have $F(x)=1-e^{-x / 2}$ for $x \geq 0$, so $P(2 \leq X \leq 5)=F(5)-F(2)=$ $\left(1-e^{-5 / 2}\right)-\left(1-e^{-2 / 2}\right)=e^{-1}-e^{-5 / 2}$.
(c) $P(2<X<5)$.

Solution: Since $X$ has a continuous distribution, this is the same as $P(2 \leq X \leq 5)$ computed above.
(d) $P(X \geq 5 \mid X \geq 2)$.

Solution: By the definition of conditional probabilities,

$$
\begin{aligned}
P(X \geq 5 \mid X \geq 2) & =\frac{P(X \geq 5 \text { and } X \geq 2)}{P(X \geq 2)} \\
& =\frac{P(X \geq 5)}{P(X \geq 2)}=\frac{e^{-5 / 2}}{e^{-2 / 2}}=e^{-3 / 2} .
\end{aligned}
$$

(e) $P(X \leq 5 \mid X \geq 2)$.

Solution: By the same argument,

$$
\begin{aligned}
P(X \leq 5 \mid X \geq 2) & =\frac{P(X \leq 5 \text { and } X \geq 2)}{P(X \geq 2)} \\
& =\frac{P(2 \leq X \leq 5)}{P(X \geq 2)}=\frac{e^{-1}-e^{-5 / 2}}{e^{-2 / 2}}=1-e^{-3 / 2} .
\end{aligned}
$$

(Alternatively, one can derive this from the previous part, using the complement rule for conditional probabilities: $P(X \leq 5 \mid X \geq 2)=1-P(X \geq 5 \mid X \geq 2))$
4. Suppose $X$ has exponential distribution with median 3. Determine:
(a) $E(X)$.

Solution: We are given that $0.5=F(3)=1-e^{-3 / \theta}$. Solving for $\theta$ gives $\theta=$ $-3 / \ln 0.5=3 / \ln 2$. Hence $E(X)=\theta=3 / \ln 2=4.32$.
(b) The 75 -th percentile of the distribution of $X$.

Solution: We have $F(x)=1-e^{-x / \theta}=1-e^{-x(\ln 2) / 3}$. To get the 75 -th percentile, we set $F(x)=0.75$ and solve for $x: 1-e^{-x(\ln 2) / 3}=0.75 x=(-3 \ln 0.25 / \ln 2)=$ $3 \ln 4 / \ln 2)=3 \cdot 2=6$.
5. Let $X$ be exponentially distributed with mean 2 , and let $Y$ be defined by

$$
Y= \begin{cases}0 & \text { if } X \leq 1 \\ X-1 & \text { if } X>1\end{cases}
$$

Find $E(Y)$.
Solution: Integrating by parts, we get

$$
\begin{aligned}
E(Y) & =\int_{1}^{\infty}(x-1) \frac{1}{2} e^{-x / 2} d x \\
& =-\left.(x-1) e^{-x / 2}\right|_{1} ^{\infty}+\int_{1}^{\infty} e^{-x / 2} d x \\
& =0-\left.2 e^{-x / 2}\right|_{1} ^{\infty}=2 e^{-1 / 2}
\end{aligned}
$$

6. Let $X$ be exponentially distributed with mean 2 , and let

$$
Y= \begin{cases}X & \text { if } X \leq 5 \\ 5 & \text { if } X>5\end{cases}
$$

Find $E(Y)$.

## Solution:

$$
\begin{aligned}
E(Y) & =\int_{0}^{5} x \frac{1}{2} e^{-x / 2} d x+\int_{5}^{\infty} 5 \cdot \frac{1}{2} e^{-x / 2} d x \\
& =-\left.x e^{-x / 2}\right|_{0} ^{5}+\int_{0}^{5} e^{-x / 2} d x+\frac{5}{2} \int_{5}^{\infty} e^{-x / 2} d x \\
& =-5 e^{-5 / 2}+2\left(1-e^{-5 / 2}\right)+5\left(e^{-5 / 2}\right) \\
& =2\left(1-e^{-5 / 2}\right)
\end{aligned}
$$

7. Let $X$ be exponentially distributed with mean 2 , and let $Y$ be defined by

$$
Y= \begin{cases}X & \text { if } X \leq 1 \\ (1 / 2)(X+1) & \text { if } X>1\end{cases}
$$

Find $E(Y)$.

## Solution:

$$
\begin{aligned}
E(Y) & =\int_{0}^{1} x \frac{1}{2} e^{-x / 2} d x+\int_{1}^{\infty} \frac{1}{2}(x+1) \frac{1}{2} e^{-x / 2} d x \\
& =-\left.x e^{-x / 2}\right|_{0} ^{1}+\int_{0}^{1} e^{-x / 2} d x+\left(-\left.\frac{1}{2}(x+1) e^{-x / 2}\right|_{1} ^{\infty}+\frac{1}{2} \int_{1}^{\infty} e^{-x / 2} d x\right) \\
& =-e^{-1 / 2}+2\left(1-e^{-1 / 2}\right)+\left(2 e^{-1 / 2}+2 e^{-1 / 2}\right) \\
& =2\left(1-\frac{1}{2} e^{-1 / 2}\right)
\end{aligned}
$$

8. Let $X$ be exponentially distributed with mean 3 , and let $Y=\max (X, 2)$. Find $E(Y)$.

Solution: Note that

$$
Y= \begin{cases}2 & \text { if } X \leq 2 \\ X & \text { if } X>2\end{cases}
$$

Thus,

$$
\begin{aligned}
E(Y) & =\int_{0}^{2} 2 \cdot \frac{1}{3} e^{-x / 3} d x+\int_{2}^{\infty} x \cdot \frac{1}{3} e^{-x / 3} d x \\
& =2\left(1-e^{-2 / 3}\right)-\left.x e^{-x / 3}\right|_{2} ^{\infty}+\int_{2}^{\infty} e^{-x / 3} d x \\
& =2\left(1-e^{-2 / 3}\right)+2 e^{-2 / 3}+3 e^{-2 / 3}=2+3 e^{-2 / 3}
\end{aligned}
$$

9. Assume the amount of damage, $X$, in an auto accident is exponentially distributed with mean 2. (All figures are thousands of dollars.)
(a) Suppose first the insurance company covers the actual amount of the loss, up to a maximum of 5 . What is the average payoff?
Solution: Letting $Y$ denote the payoff, we have $Y=\min (X, 100)$, i.e.,

$$
Y= \begin{cases}X & \text { if } X \leq 5 \\ 5 & \text { if } X>5\end{cases}
$$

and we need to compute $E(Y)$. This is the calculation carried out in Problem 6; the result is $E(Y)=2\left(1-e^{-5 / 2}\right)$.
(b) Suppose now the insurance company covers the full amount of the loss minus a deductible of 1 . What is the average payoff?

Solution: Letting $Y$ denote the payoff, we now have

$$
Y= \begin{cases}0 & \text { if } X \leq 1 \\ X-1 & \text { if } X>1\end{cases}
$$

We need to compute $E(Y)$. This is the computation carried out in Problem 5; the result is $E(Y)=2 e^{-1 / 2}$.
(c) Suppose the insurance company covers the full amount of the loss up to 1, and 50\% of any loss in excess of 1 . What is the average payoff?
Solution: Letting $Y$ denote the payoff, we now have

$$
Y= \begin{cases}X & \text { if } X \leq 1 \\ 1+(1 / 2)(X-1)=(1 / 2)(X+1) & \text { if } X>1\end{cases}
$$

We need to compute $E(Y)$. By the calculation of Problem 7, we get $E(Y)=$ $2\left(1-\frac{1}{2} e^{-1 / 2}\right)$.

